Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Virol J ; 20(1): 51, 2023 03 25.
Article in English | MEDLINE | ID: covidwho-2265323

ABSTRACT

BACKGROUND: Multiple sclerosis (MS) is characterized by neuroinflammation and demyelination orchestrated by activated neuroglial cells, CNS infiltrating leukocytes, and their reciprocal interactions through inflammatory signals. An inflammatory stimulus triggers inducible nitric oxide synthase (NOS2), a pro-inflammatory marker of microglia/macrophages (MG/Mφ) to catalyze sustained nitric oxide production. NOS2 during neuroinflammation, has been associated with MS disease pathology; however, studies dissecting its role in demyelination are limited. We studied the role of NOS2 in a recombinant ß-coronavirus-MHV-RSA59 induced neuroinflammation, an experimental animal model mimicking the pathological hallmarks of MS: neuroinflammatory demyelination and axonal degeneration. OBJECTIVE: Understanding the role of NOS2 in murine-ß-coronavirus-MHV-RSA59 demyelination. METHODS: Brain and spinal cords from mock and RSA59 infected 4-5-week-old MHV-free C57BL/6 mice (WT) and NOS2-/- mice were harvested at different disease phases post infection (p.i.) (day 5/6-acute, day 9/10-acute-adaptive and day 30-chronic phase) and compared for pathological outcomes. RESULTS: NOS2 was upregulated at the acute phase of RSA59-induced disease in WT mice and its deficiency resulted in severe disease and reduced survival at the acute-adaptive transition phase. Low survival in NOS2-/- mice was attributed to (i) high neuroinflammation resulting from increased accumulation of macrophages and neutrophils and (ii) Iba1 + phagocytic MG/Mφ mediated-early demyelination as observed at this phase. The phagocytic phenotype of CNS MG/Mφ was confirmed by significantly higher mRNA transcripts of phagocyte markers-CD206, TREM2, and Arg1 and double immunolabelling of Iba1 with MBP and PLP. Further, NOS2 deficiency led to exacerbated demyelination at the chronic phase as well. CONCLUSION: Taken together the results imply that the immune system failed to control the disease progression in the absence of NOS2. Thus, our observations highlight a protective role of NOS2 in murine-ß-coronavirus induced demyelination.


Subject(s)
Coronavirus Infections , Demyelinating Diseases , Murine hepatitis virus , Nitric Oxide Synthase Type II , Animals , Mice , Demyelinating Diseases/pathology , Demyelinating Diseases/virology , Membrane Glycoproteins , Mice, Inbred C57BL , Murine hepatitis virus/metabolism , Neuroinflammatory Diseases , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , Receptors, Immunologic , Coronavirus Infections/pathology
2.
Health Sci Rep ; 5(2): e548, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1729130

ABSTRACT

Background and Aims: All components of the immune system are involved in alleviating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Further research is required to provide detailed insights into COVID-19-related immune compartments and pathways. In addition, a significant percentage of hospitalized COVID-19 patients suspect bacterial infections and antimicrobial resistance occurs following antibiotics treatment. The aim of this study was to evaluate the possible effects of antibiotics on the response of neutrophil-related genes in SARS-CoV-2 patients by an experimental in silico study. Methods: The two data sets GSE1739 and GSE21802 including 10 SARS positive patients and 35 influenza A (H1N1) patients were analyzed, respectively. Differentially expressed genes (DEGs) between these two data sets were determined by GEO2R analysis and the Venn diagram online tool. After determining the hub genes involved in immune responses, the expression of these genes in 30 COVID-19 patients and 30 healthy individuals was analyzed by real-time polymerase chain reaction (PCR). All patients received antibiotics, including levofloxacin, colistin, meropenem, and ceftazidime. Results: GEO2R analysis detected 240 and 120 DEGs in GSE21802 and GSE1739, respectively. Twenty DEGs were considered as enriched hub genes involved in immune processes such as neutrophil degranulation, neutrophil activation, and antimicrobial humoral response. The central nodes were attributed to the genes of neutrophil elastase (ELANE), arginase 1 (ARG-1), lipocalin 2 (LCN2), and defensin 4 (DEFA4). Compared to the healthy subjects, the expression of LCN2 and DEFA4 were significantly reduced in COVID-19 patients. However, no significant differences were observed in the ELANE and AGR-1 levels between COVID-19 subjects and the control group. Conclusions: Activation and degranulation of neutrophils were observed mainly in SARS, and H1N1 infection processes and antibiotics administration could affect neutrophil activity during viral infection. It can be suggested that antibiotics can decrease inflammation by restoring the expression of neutrophil-related genes in COVID-19 patients.

3.
J Clin Med ; 10(5)2021 Mar 04.
Article in English | MEDLINE | ID: covidwho-1124853

ABSTRACT

BACKGROUND: The coronavirus disease 2019 (COVID-19) outbreak, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been declared a global pandemic. It is well-established that SARS-CoV-2 infection can lead to dysregulated immune responses. Arginase-1 (Arg1), which has a pivotal role in immune cells, can be expressed in most of the myeloid cells, e.g., neutrophils and macrophages. Arg1 has been associated with the suppression of antiviral immune responses. METHODS: Whole blood was taken from 21 COVID-19 patients and 21 healthy individuals, and after RNA extraction and complementary DNA (cDNA) synthesis, gene expression of Arg1 was measured by real-time PCR. RESULTS: The qPCR results showed that the expression of Arg1 was significantly increased in COVID-19 patients compared to healthy individuals (p < 0.01). The relative expression analysis demonstrated there were approximately 2.3 times increased Arg1 expression in the whole blood of COVID-19 patients. Furthermore, the receiver operating characteristic (ROC) analysis showed a considerable diagnostic value for Arg1 expression in COVID-19 (p = 0.0002 and AUC = 0.8401). CONCLUSION: Arg1 might be a promising marker in the pathogenesis of the disease, and it could be a valuable diagnostic tool.

SELECTION OF CITATIONS
SEARCH DETAIL